Disulfide linkage engineering for improving biophysical properties of human VH domains.
نویسندگان
چکیده
To enhance their therapeutic potential, human antibody heavy chain variable domains (V(H)s) would benefit from increased thermostability. The highly conserved disulfide linkage that connects Cys23 and Cys104 residues in the core of V(H) domains is crucial to their stability and function. It has previously been shown that the introduction of a second disulfide linkage can increase the thermostability of camelid heavy-chain antibody variable domains (V(H)Hs). Using four model domains we demonstrate that this strategy is also applicable to human V(H) domains. The introduced disulfide linkage, formed between Cys54 and Cys78 residues, increased the thermostability of V(H)s by 14-18°C. In addition, using a novel hexa-histidine capture technology, circular dichroism, turbidity, size exclusion chromatography and multiangle light scattering measurements, we demonstrate reduced V(H) aggregation in domains with the Cys54-Cys78 disulfide linkage. However, we also found that the engineered disulfide linkage caused conformational changes, as indicated by reduced binding of the V(H)s to protein A. This indicates that it may be prudent to use the synthetic V(H) libraries harboring the engineered disulfide linkage before screening for affinity reagents. Such strategies may increase the number of thermostable binders.
منابع مشابه
Domain interactions in the Fab fragment: a comparative evaluation of the single-chain Fv and Fab format engineered with variable domains of different stability.
Recombinant antibody fragments, most notably Fab and scFv, have become important tools in research, diagnostics and therapy. Since different recombinant antibody formats exist, it is crucial to understand the difference in their respective biophysical properties. We assessed the potential stability benefits of changing the scFv into the Fab format, the influence of the variable domains on the s...
متن کاملThe disulfide bonds in antibody variable domains: effects on stability, folding in vitro, and functional expression in Escherichia coli.
The formation of the disulfide bonds in the variable domains VH and VL of the antibody McPC603 was found to be essential for the stability of all antigen binding fragments investigated. Exposure of the Fv fragment to reducing conditions in vitro resulted in irreversible denaturation of both VH and VL. In vitro refolding of the reduced Fv fragment was only possible when the disulfide bonds were ...
متن کاملAntibody light chain variable domains and their biophysically improved versions for human immunotherapy
We set out to gain deeper insight into the potential of antibody light chain variable domains (VLs) as immunotherapeutics. To this end, we generated a naïve human VL phage display library and, by using a method previously shown to select for non-aggregating antibody heavy chain variable domains (VHs), we isolated a diversity of VL domains by panning the library against B cell super-antigen prot...
متن کاملTransfer of engineered biophysical properties between different antibody formats and expression systems.
Recombinant antibodies and their derivatives are receiving ever increasing attention for many applications. Nevertheless, they differ widely in biophysical properties, from stable monomers to metastable aggregation-prone mixtures of oligomers. Previous work from our laboratory presented the combination of structure-based analysis with family consensus alignments as being able to improve the pro...
متن کاملThe nature of antibody heavy chain residue H6 strongly influences the stability of a VH domain lacking the disulfide bridge.
Monoclonal antibody mAb 03/01/01, directed against the musk odorant traseolide, carries a serine residue instead of the conserved Cys H92 in the heavy chain variable domain, and is thus lacking the highly conserved disulfide bridge. We investigated the energetic consequence of restoring the disulfide bond and the nature of residue H6 (Glu or Gln), which is poised to interact with Ser H92 in the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Protein engineering, design & selection : PEDS
دوره 25 10 شماره
صفحات -
تاریخ انتشار 2012